Pharmacology of AI

Philosophical and political challenges of computational automation

Contrary to what the term “artificial intelligence” might suggest, contemporary digital technologies do not learn or invent. They are writing systems and calculation devices. Thanks to the (human) indexing of massive quantities of data and by means of certain very specific mathematical operations, these algorithmic systems make it possible to “generate” content (textual or imaged) comparable to so-called “human” content (on the statistical exploitation of which these systems are based).

Paul Klee, Insula Dulcamara, 1938.

If we must criticize the notion of “artificial intelligence”, it is first to deconstruct the analogies between minds, brains and computers (which are based on the most classic metaphysical dualisms), in order to open up a reflection that is at once epistemological, anthropological and political on computational or digital automatons.

Such a critique can be called “pharmacological” insofar as it does not aim to denounce or condemn digital devices, but to question the (theoretical as well as practical) limits of computational technosciences and automation, while proposing alternative models.

The dazzling development of “generative artificial intelligences”, which now integrate all digital ecosystems (search engines, office suites, computer code, etc.) is preparing a major technological shift, which could ultimately lead to the automation of expression and thought.

Such extractivist systems rely on the exploitation of natural and cultural resources, reinforcing the ongoing ecological catastrophe as well as the risks of symbolic proletarianization and standardization. In such a context of radical and disruptive innovation, is it still possible to put algorithms at the service of hermeneutic and contributory practices?

More information…

Ressources

A. Alombert et G. Giraud, Le capital que je ne suis pas ! Mettre l’économie et le numérique au service de l’avenir, Fayard, 2024.A. Alombert, “Numérique et IA : non pas y renoncer, mais les transformer”, En Question, décembre 2024.

A. Alombert, “Les trois écologies à l’épreuve de l’IA”, Chut Media, juillet 2024.

A. Alombert, “La démocratie à l’épreuve de l’IA”, AOC, avril 2024.

A. Alombert “Intelligence artificielle ou automatisation de la pensée ?”, Alternatives économiques, juillet 2023.

A. Alombert et G. Longo, “Il n’y a pas d’intelligence artificielle : parlons d’automates numériques pour rompre avec les idéologies publicitaires !”, L’Humanité, juin 2023.

A. Alombert, « ChatGPT : derrière le mythe de l’IA, les dangers des automates computationnels », Le vent se lève, avril 2023.

A. Alombert, “Panser la bêtise artificielle. Organologie et pharmacologie des automates computationnels”, Appareil, n°26, 2023.

A. Angelini et G. Longo, « Comparing Artificial, Animal and Scientific Intelligence: A Dialogue with Giuseppe Longo », Theory, Culture and Society, Vol. 39, Issue 7-8, 2022.

D. Bates, An artificial history of natural intellligence, University of Chicago Press, 2024.

D. Bates, “L’amplification exosomatique de l’intelligence”, Appareil n°26, 2023.

E. Favier-Baron, “Que fait l’Intelligence artificielle à l’intelligence ?”, Appareil26, 2023.

M. Krzykawski, “Panser la cognition. Pour une approche post-cognitiviste de l’esprit-cerveau”, Appareil n°26, 2023.

G. Longo, Le cauchemar de Prométhée. Les sciences et leurs limites, PUF, 2023.

L. Nguyen Hoang, V. Fersing, J.-L. Fourquet, “Il est urgent de porter attention aux conflits d’intérêt des experts en IA”, Usbek et Rica, 2024.

M. Pasquinelli, The Eye A social history of Artificial Intelligence, Verso, 2023.

I. Regnauld, “Vrais et faux risques de l’intelligence artificielle”, Mais où va le web, 2024.

F. Tréguer, Technopolice. La surveillance policière à l’ère de l’intelligence arificielle, Divergences, 2024.

X-Alternatives, “Intelligence Artificielle : pour l’émergence d’alternatives”, 2024.